
XML as a MultiMedia Window into Science Data
Donald C. Brown
ECOlogic Corp.

ESTO Prototype ID. 59.0

Abstract

We are prototyping an XML based system to
provide metadata services that mirror data
services, such as subsetting, that are used to
derive new products from HDF-EOS source
products. The HDF-EOS API provides
services on the data without providing
corresponding services on all EOSDIS meta-
data, which can result in new data products
with invalid meta-data. This project focuses
on the impacts that XML and related
technologies can have on creating data
product with consistent data and meta-data.
We are addressing issues around the use of
metadata in EOSDIS and larger Earth Science
community and with the location of metadata
in the HDF-EOS file itself. To focus the effort,
data was selected from MODIS and MISR
based on diverse subsetting criteria.
Subsetting of data and the corresponding
metadata has been used as the catalyst for
identifying the issues that are pertinent to

other services and data types. Our approach
uses XML and XSL as tools to aid in
configuring a framework that calls external
applications to actually derive the new
metadata values. An attempt to utilize
existing subset tools and access data via the
HDF-EOS and HDF APIs has made
simultaneous services on data and metadata
impossible at this juncture. Our approach,
therefore, is to provide a tool to augment
existing sub-setters by updating the new data
products with consistent meta-data.
Conclusions reached so far range on issues
from the usability of XML Schema to impacts
of the HDF-EOS metadata model on the ability
to provide services to both data and metadata
from the Terra project. Conclusions carry
implications for future metadata models and
the use of XML and related technologies for
providing services for HDF-EOS data

1.0 Introduction

We are developing a prototype to investigate
using eXtensible Markup Language (XML) and
related technologies to provide a unified view of
science data and metadata within a single
document. Such a view of science data as
multimedia might allow users to manage,
manipulate and add value to existing self-
describing science data formats. Applying XML
as a window into a science data format such as
the Hierarchical Data Format for the Earth
Observing System (HDF-EOS) could support
scenarios such as:
• Detailed commentary and analysis on

granules by individual scientists could be
stored directly with that granule.

• Services such as subsetting could operate on
both metadata and data simultaneously

• Scientists could extend existing metadata
standards to handle their unique metadata
needs, allowing science teams outside EOS
to participate in the generation of earth

science products that the EOS systems could
still ingest and manage.

• Science teams could productively use
inexpensive and free generic XML software
tools.

The prototype focuses on issues around
providing services, such as subsetting and re-
gridding, to the data. Investigation of existing
subsetting services, HEW from the University of
Alabama at Huntsville and the MISR subsetter
from Langley Research Center, has indicated that
changes were made to only part of the metadata
and that the metadata that remained in the HDF-
EOS subset file was partly reflective of the
subsetted data and partly reflective of the parent,
unsubsetted, data. For MISR data, at least, there
is metadata that is held within HDF structures
that are not accessible via the HDF-EOS
interface and is left unchanged by the HDF-EOS
subset routines. This leads to data type
dependent subset tools. The HEW subsetter
would not subset a MISR file and the MISR
subset tool does not work on a MODIS file.

Service provision is data specific and is focused
on the data and not the data and metadata.

In looking at how services can be provided to the
data and metadata within the HDF-EOS file, it
was clear that creation of an XML version of the
HDF-EOS file would not offer much in terms of
addressing the multiple issues that were present
Storage of binary data within XML is an open
issue and current approaches are not simply
conducive to data manipulation. The algorithms
needed to locate and subset data within an HDF-
EOS file are part of the HDF-EOS API and
would have to be re-implemented to work on
XML. Existing subset tools would have to be re-
written to work on XML documents rather than
on HDF-EOS files. Over time, the amount of
data that would have to be converted from HDF-
EOS to XML would be extremely large. Clearly,
benefits from XML and related technologies
attained without conversion of HDF-EOS files to
XML documents should be sought. Once the
decision was made to use the existing APIs and
tools to provide services to the data within the
HDF-EOS files, the role of XML in providing
services shifts from representation of the
metadata and data in the file to representing the
processing needed to provide services to the data
and the metadata.

2.0 Problem Definition

2.1 Metadata Issues

HDF-EOS is a data format that extends
Hierarchical Data Format (HDF) to provide
specific data types that were needed to hold the
data from Earth Observing System (EOS). It is
an attempt to fit a wide variety of data formats
into three basic structures. The use of basic
structures provides some level of similarity of
access of the data across different instruments
and different platforms.

In order to accommodate HDF-EOS data
requirements, data from some instruments made
exceptional use of the HDF-EOS structures.
MISR required a change in the original HDF-
EOS Grid implementation in order to store
swath-like products which are broken into equal
size blocks.

The needs for the storage of metadata specific to
the structures of the data did not fall neatly into
the metadata structures that were available under
HDF-EOS. HDF-EOS metadata is stored in
three main structures: Structural, Core or
Inventory, and Product or Archive metadata.
Structural metadata is used by the HDF-EOS
APIs to understand the structure of the data
within the file, and the HDF-EOS APIs modify
the structural metadata to reflect operations such
as subsetting. Core metadata is used by ECS for
search and retrieval of the data and is not altered
by the HDF-EOS APIs during subset operatons.
Core Metadataa can be operated on by the
metadata tools that are part of the SDP Toolkit.
Product metadata contains metadata that is
important for the product, but which is not used
in the searching and retrieval of the data.

 Additional metadata is stored in a data specific
manner. MISR metadata is broken into six
classes, three of which are MISR specific. MISR
allows for File, Grid/Swath, and block level
metadata. Only Grid/Swath metadata is
accessible via the HDF-EOS APIs. The other
metadata have to be accessed via the HDF
interface. This metadata is also left unchanged
by the current subsetting tools.

The relationship between data and metadata
within any specific HDF-EOS file is a function of
the organization of data for that specific data
type. A generic service tool requires the ability
to change processing based on data type or the
creation of a data representation which would
abstract the specifics of many different data
types. This prototype effort has focused on the
first approach in an attempt to find a way to
create operations that would work on both data
and metadata concurrently.

2.2 Metadata – Data
Consistency

Use of the data is the best indicator of whether
the mismatch between subset data and the
metadata contained in the file with it is a
significant problem. Currently, data that is
modified by a data services is seen as being re-
createable and is not re-ingested into ECS or re-
processed by the data centers. As the quantitiy of
data grows and as specialized collections are

created, the ability to search on the metadata
stored in a subsetted file will increase and the
issues about data and metadata consistency will
become critical. Either additional collection
specific metadata will have to be added to allow
for searching within a specific collection or
adherence to a searchable metadata standard will
have to be maintained.

The metadata held in the CoreMetadata reflects
many of the issues around maintaining
consistency of data and metadata. As part of the
prototype effort, the parameters in the
CoreMetadata have been classified as to their
relationship with the modified data structures
found in a derived product and as to their means
of modification. For several parameters, such as
QA flags, the methods for recalculating the
values are unclear in terms of the location of the
data and the algorithm needed for the
recalculation.

One of the strengths of the HDF-EOS file format
is that it creates a self-describing file. With the
current state of service provision, the resulting
files are HDF-EOS in name only since they are
no longer truly self describing.

3.0 XML
XML, a subset of SGML (Standard Generalized
Markup Language), was developed by W3C, the
World Wide Web Consortium, as a result of a
desire to provide a meta markup language to
allow for more flexible tagging of data than was
provided by HTML. HTML has a fixed set of
tags which tie the display of data with the content
of the data. XML separates the display of data
from the structure and contents which allows for
non-visual application usage of tags to find data
and change processing on the data. XSL
(eXtensible Style sheet Language) technoloy
provides both a way of formatting the
information in an XML document and providing
a transformation language for the data in the
XML document.

XML documents can be validated by using a
Document Type Definition (DTD) file or by
using an XML Schema. An XML Schema is
itself an XML document that describes the
structure of an XML document type including the
types required for each of the elements in the
document. DTDs are the older more stable
technology; XML Schema is the new technology

and has received W3 Recommendation status in
May, 2001.

XML is text based and human readable to a
point. It provides the ability to create new text
tags that are interpreted by a corresponding style
sheet or application. This allows display of text
and images within a browser based on the
browser's ability to parse the XML and
associated style sheet. The XML document itself
contains the structure of the data and allows for
some relational information between the different
structures. It is limited by only supporting a tree
or hierarchical data structure.

While XML does a wonderful job of expanding
the information that can be displayed on a
website, it has also made inroads in the storage of
information within a database. XML documents
can be inserted directly into and retrieved from
databases and search operations can be
performed on the XML documents whether in a
database or not.

XML also shares HTML's ability to indicate that
data should be pulled from a different file. There
is also an ability to pass instructions to an
underlyinig application to guide the processing of
the content of the XML document. This ability to
permit variable processing of data is where our
prototype has focused its efforts. Binary data,
such as images, can be stored within the XML
document itself in a 64 bit encoded text format,
or read from an external file. Formatting and
displaying the contents is done via XSL

4.0 Prototype Design

4.1 Design Drivers
The prototype design evolved based on several
considerations. The initial plan to model HDF-
EOS data with an XML representation raised
more issues than it seemed to solve. First, access
to the data in the HDF-EOS file has a well
developed API that would have to be replicated
in order to access the XML version of the data.
This ruled out a simple XML representation of
the HDF-EOS data. A concept of using the
HDF-EOS APIs to create a new organization of
the data raised different issues. The organization
of the XML document would be different for
different services. For example, organizing the
data to support subset services efficiently would

be different than the organization needed for
efficiently creating a mosaic of several different
files. Beyond the organizational issues, there are
issues with how the binary data in an HDF-EOS
file would be maintained and interpreted since
XML is a text based file type. Lastly, while the
first two issues could be addressed with some
potential chance of success, the actual provision
of a service, e.g. subsetting, would have to be
implemented then using the XML document to
create a new XML document. At this point in the
analysis, there did not seem to be a convincing
argument that converting an HDF-EOS file to an
XML format would provide much value.

Once the decision was made to not simply
convert an HDF-EOS file to an XML document,
then it was easy to assume the usage of the
current tools for providing services. Interest was
expressed by ESTO in development of an API
that would allow developers of future services
(e.g. regridding, creation of mosaics, etc.) create
those services in a less data dependent manner.
While such an API was addressed breifly in the
original proposal, it was seen as an effort beyond
the scope of the current protype effort. Still,
answering questions about how such an API
could be created remained one of the drivers in
the design of the prototype.

The decision not to develop a separte subsetting
tool made the prototype design dependent on the
current subsettng tools. This in turn raises
questions about the concept of providing services
to the data and the metadata concurrently.
While the situation in terms of current subset
capabilities is intractable, answers have to be
found for how to handle data and metadata
concurrently for new services. This too became
a design driver for the prototype.

In order to focus the efforts, the design has been
limited to subsetting services on two ESDTs.
There is a recognition, though, that the prototyp
should be extensible to different data types and
different services. The design has to indicate
where there is a dependence on the data and on
the type of service provided so that modifications
to the design to accommodate different data and
different services can be more easily identified.
The limitation of the prototype effort to looking
at different types of ESDT’s means that the only
file type addressed is HDF-EOS. While not
explicitly stated as a driver for the prototype in
the original statement of work, there has been an

effort in the eveolution of the design to consider
expansion of the prototype to additional data
formats..

The design has also focused on the correction of
the Core Metadata. This has been in large part
due to the early focus on MODIS data which
does not seem to have embedded metadata in
HDF structures connected to the data objects.
Review of the MISR Science Processing ICD
indicates that the study of MISR data will expand
the design of the prototype to handle metadata
that is embedded in native HDF structures.
There is also a desire to allow for additional
metadata structures to be added to the HDF-EOS
file by the scence user.

The last driver is the operations concept for the
prototype. Early on, we decided on a GUI
which would run the processing of the metadata
for a subset file. This decision was based on a
desire to give the initial users of the prototype
control over the correction of the metadata and
its re-insertion back into the HDF-EOS subset
file. The current design is based on a GUI
developed using Java Swing components. The
advent of Java Server Pages makes the concept
of running the prototype as a web application
intriguing and will be addressed in the final
report.

4.2 Components of the
Prototype
Figure 4.2-1 Components of the XML Metadata
Correction Tool shows the connection between
the different components. The Java application
and GUI control the extraction and correction of
the metadata from the subset HDF-EOS file.
GRUNK (GRammatical UNderstanding Kernel)
is a product from the University of Illinois at
Urbana-Champaign for creating XML from any
other structured text based language (e.g. ODL)
which is used to create XML documents from the
ODL containing the Core Metadata. Given the
focus of the initial design of the prototype on the
issues with the Core Metadata, the prototype is
currently designed to handle metadata that is held
in ODL format only. Slight modifications to the
design will be needed to handle metadata that is
kept in HDF data structures (e.g. VDATA).
XML-Spy, the third software component of the
prototype is used for creation of XML Schema
and XSL Style Sheets for each ESDT which will
be supported by the prototype. The acutal

corrections to metadata values would be made
via external code that is called a standalone
applications (denoted by the C code component
in the figure).

Figure 4.2-1 Components of the XML
Metadata Correction Tool

The prototype requires several layers of
configuration . There is a configuration file
which is used for the general configuration of the
GUI and Java application. It contains locations
of supporting software (the external applications)
and location of the log files. GRUNK requires
its own configuration file. Both the application
configuration file and the GRUNK configuration
file are XML documents.

Each ESDT also requires configuration in the
form of an XML Schema and two XSL style
sheets. The XML Schema gives the generic
structure of the metadata XML document for
each ESDT and is used to validate the XML
created from any given HDF-EOS file of that
data type. One of the XSL style sheets is used
for guiding the processing needed to correct the
data values of the metadata parameters. The
other XSL style sheet is used to convert the XML
document with the corrected metadata values into
an ODL document which can then be placed
back into the HDF-EOS file.

4.3 Processing
The prototype has a very simple JAVA GUI that
guides the user through a CoreMetadata
corrections process. The GUI has one main
screen with three buttons at the top that allow the
user control of the entire CoreMetadata
correction process. Only one of these three
buttons will be sensitized at any given step in the
process. In addition to the three buttons at the
top of the screen, there are two text areas which
allow the user to view the XML transformations
produced in the uncorrected and corrected XML
documents. There are also two buttons at the
bottom of the screen which provide the user with
access to information about the CoreMetadata
conversion and replacement process, as well as
the ability to restart the entire end-to-end process
again. Figure 4.3-1 Prototype Screen Layout as
it Initially Appears, shows the initial state of the
GUI. The only main button available at the
initial invocation of the tool is the Select HDF
File button. Pushing the Select HDF File button
allows the selection of an existing HDF-EOS file,
which should be the product of one of the
existing subset tools.

Figure 4.3-1 Prototype Screen Layout as It

Initially Appears

The processing that follows will be focused on
providing subset services to the metadata in the
file based on the subset request that was
performed on the data in the original HDF-EOS
file. Tying together the provision of multiple
services within the same application could be
accomplished via several different operations
concepts. Rather than spending prototype effort
exploring those different operations scenarios,

the prototype makes the assumption of the type
of service that is being performed and focuses
only on subsetting.

Once the user has selected the file, the java
application determines the ESDT of the file. The
configuration parameters for the ESDT are
retrieved. These parameters include the name
and location of the XML Schema for the ESDT,
the name and location of the XSL style sheets,
location of the external applications that will be
used for the correction of the metadata, and the
name and location of the configuration file that
will be used for the ODL to XML
transformation.

The java application extracts the ODL for the
Core Metadata from the file using an external
application written in C. The application gets
input from the command line arguments and
writes the Core Metadata to standard out. The
Java External Interface class reads the Core
Metadata ODL from standard in and stores the
ODL in memory. The Java interface used to call
the application for getting the Core Metadata
ODL creates a new process to execute the
application with the arguments that are passed in
to it. GRUNK is then called to change the ODL
into an XML document that contains the
uncorrected metadata. The XML document is
validtaed against the XML Schema that exists for
the ESDT and, if valid, displayed to the user in
the Uncorrected XML CoreMetadata screen on
the left hand side of the GUI. The button,
Perform XML Correction, is then sensitized and
the user can continue by hitting this button to
start the correction of the XML CoreMetadata
document.

When the user pushes the Perform XML
Correction button, the GUI initiates the
processing of the XML document containing the
uncorrected metadata through the use of an
ESDT specific XSL style sheet that will control
the re-calculation of selected metadata
parameters. The style sheet is parsed by the
XSLT parser, Xalan, and embedded Java calls
the Java External Interface passing the
application to run and the input to the
application. The external application returns the
updated value as a string and the value is put into
a new XML document. Metadata parameters that
need no modification are simply copied from the
original uncorrected XML CoreMetadata
document into the new corrected XML

document. The XML document with corrected
metadata values is validated against the ESDT
specific XML Schema. The Corrected XML Core
Metadata text area is populated with the XML
document created by the value correction
process. Clicking on the Insert Corrected
CoreMetadata button will cause the Java
application, using another XSL style sheet for
XML to ODL conversion, to create an ODL
version of the corrected XML CoreMetadata
document and write the ODL to the HDF-EOS
file.

A dialog is displayed to indicate that the original
CoreMetadata ODL file has been successfully
replaced back into the HDF file, thus ending the
end-to-end process. All main buttons are
desensitized, the Restart button must be
pushed.to re-initialize the tool. The origiinal
subset file which had incorrect metadataa will
now have metadata that is reflective of the data in
the file.

5.0 Lessons Learned
The ways that metadata is held within the HDF-
EOS file does not lend itself to providing
services on both data and metadata. The location
of the metadata and the relationships between the
metadata and the data are specific to the data
type that is being processed. XML with its
ability to separate display and structure and its
ability to aid in the transformation of data from
one format to another seems to be a good fit for
tyring to provide generic services to HDF-EOS
files.

One approach would be to define generic format
that would cover all the ESDTs and translate the
individual ESDT to that format and have services
provided on that format. Two problems have to
be confronted. The first problem is the
redevelopment of the APIs needed to provide
services on the new format. This problem leads
almost immediately to the second problem which
is the definition of the data and metadata models
for the new format. This is a duplication of the
effort that gave rise to HDF-EOS as a format in
the first place. The result would likely be an
improvement in some areas and a degradation in
others for providing services. The addition of
yet another format would complicate the data
management situation even more.

The approach of having a framework that will tie
together processing based on data type specific
configuration has some promise. It is possible
that with some alterations, the current subset
tools could be used by the framework. While the
actual processing on data and metadata would
not truly be simultaneous, from a user
perspecitive they could be part of the same
process. Additional subseting or other services
could be added with changes made to the
framework to suport them. Such changes would
be connected to the need to have some logic in
the framework to make sense of the data returned
from the external applications. For example, the
string based returns needed for subsetting
metadata would be insufficient for subsetting the
data itself. The applications executed by the
framework could apply algorithms to both the
data and the metadata.

The major difficulties are not so much technical
as procedural. Configuration for each data type
requires knowledge both of the processing
needed for providing services to the metadata
and the data as well as knowledge of XML
Schema and XSL style sheets. Ideally, the
science team would consider the requirements for
providing services to the data and metadata as
part of the creation of the data and metadata
models. Either a parameter would be identified
as not being modified for specific derived
products or the method and/or algorithm for
calculating the modified values would be
identified as well as the source of the data for the
re-calculation. Such an effort may not be a
prioirity for the science team. This means that
the knowledge of how to transform the data and
metadata will happen after the data has been
collected. Getting that information has been very
difficult.

One of the goals of the original proposal for the
prototype was the unification of data and
metadata. In many ways, this is desireable since
the distinction between data and metadata is
context based. Within the confines of EOS data
held in HDF-EOS formats, though, this does not
seem to be an attainable goal. The data model
and metadata model are distinct to the point that
there is no simple way to provide services to both
data and metadata.

The state of XML and related technologies,
while stabalizing, is still somewhat problematic.

XML Schema has just become a full
recommendation and COTS products are just
now catching up to that recommendation. This
conflict between versions of the candidatae
recommendations has caused some difficulties in
integrating different pars of the prototype, but he
number of conflicts between different versions of
standards is dropping considerably.

References:

[1] Siri J. S. Khalsa, S. Amer, H. Direskeneli, N.
LaBelle-Hamer, A. K. Sharma, Glenn Shirtliffe,
and R. Raskin. An ECS Data Provider’s Guide to
Metadata, DRAFT White Paper,
http://ecsinfo.gsfc.nasa.gov/metadata/wpdraft.ht
ml, January, 1997.

[2] S. Lewick, K. Cream, S. Gluck, S. Paradise,
A. Shaner, Science Data Processing Interface
Control Document, Jet Propulsion Laboratory,
California Institute of Technology, March, 1998.

[3]E. R. Harold, XML Bible, IDG Books
Worldwide, Inc., New York, N.Y, 1999

